Click each question to see the answer. Don't see your question here? Send us a message on social media!
Relax. Breathe. We are here to help! Our website has a lot of information available for students, teachers, and parents. To help guide you, check out this blog post. It explains how best to use our website as a student.
You can watch this video for an overview of effective learning strategies – it’s about 8 minutes long, and it tells you all about 6 really good ways to study. Then, to learn more, try watching our other videos and looking over these posters.
Next, decide what you are going to study. Are you working from a text? Then you can use this method for studying a textbook. Do you want to use flashcards in the most effective manner? Use this tutorial. Would you like to try dual coding (combining words and visuals), now that you know how helpful it can be? Here’s a step-by-step post on how to do that. If you have trouble concentrating, you can use the Pomodoro technique.
You can also check out our blog. This tag will show you all blog posts tagged "how to study". You can also read the other questions below, and their answers, to see if you find those helpful. Good luck!
Spaced practice and interleaving help you figure out when you should study. Retrieval practice is the most important study strategy, and you should engage in this activity every time you study; it answers the overall question of how you should study. And finally: elaboration, concrete examples, and dual coding provide additional techniques that can be used in conjunction with retrieval practice. Good luck!
Yes, there is definitely a lot of overlap among the strategies. This is not necessarily a bad thing! They are not meant to stand alone and can (and should) be used together. For example, spacing needs to be used with other strategies, because spacing is only about when to cover material, and not how to cover material. Retrieval practice can and should be integrated with all of the strategies. Read this blog for more information about how to combine the strategies effectively.
Fortunately, retrieval practice does not just enhance memorization, or rote recall of information. Though, students do need to be able to remember facts in order to apply them in new situations.The good news is, research has shown that retrieval practice improves students’ abilities to think more deeply about the content they’ve learned and apply the information to new situations that they have not seen before (1). In other words, retrieval helps students transfer what they’re learning (2) to these new contexts. Thus it seems that retrieval practice, especially repeated and spaced retrieval, helps students improve their ability to reconstruct and flexibly use information.
Given this, we would make the educated guess that retrieval practice would encourage students to creatively apply what they’re learning. However, we need more research to fully answer this question!
See this post to read about retrieval practice, spaced practice, and applying knowledge. If you’re interested in teaching creativity, check out this digest. You can also read about fostering creativity in the classroom in the 20 principles from psychology to enhance pre-K to 12 teaching and learning. A similar guide for college and university instructors is forthcoming!
(1) Smith, M. A., Blunt, J. R., Whiffen, J. W. & Karpicke, J. D. (2016). Does providing prompts during retrieval practice improve learning? Applied Cognitive Psychology, 30, 544-553.
(2) Butler, A. (2010). Repeated testing produces superior transfer of learning relative to repeated studying. Journal of Experimental Psychology: Learning, Memory, & Cognition, 36, 1118-1133.
While there’s been lots of research into this question (1), it becomes quite tricky to try to figure out the “optimal” amount of time between opportunities to revisit and/or retrieve information. In general, if opportunities to revisit are too close together, that’s too much like cramming and won’t be very effective. On the other hand, if they are too far apart, so much could be forgotten that it would be like re-learning information from scratch. Some apps programmed with complicated algorithms might be able to approximate optimal lag for a number of situations (2). We also produced a beta version of a tool for teachers to help schedule review and retrieval opportunities. Teachers have also written, like here, as well as on many other blogs, about their experiences with trying to figure out the ideal lag. However, our advice would be to keep it simple: give students more opportunities to review and retrieve the important information and material that needs to be remembered for longer.
(1) Cepeda, N. J., Vul, E., Rohrer, D., Wixted, J. T., & Pashler, H. (2008). Spacing effects in learning a temporal ridgeline of optimal retention. Psychological Science, 19, 1095-1102.
(2) Lindsey, R. V., Shroyer, J. D., Pashler, H., & Mozer, M. C. (2014). Improving students’ longterm knowledge retention through personalized review. Psychological Science, 25, 639-647.
There is a fair amount of research pitting various formats of retrieval against one another to see which is better, and some research has found differences. For example, when comparing short-answer and multiple-choice questions, researchers found a benefit of short-answer over multiple-choice, but only when corrective feedback after retrieval was provided (1). However, other studies have found very little or no differences between various formats (2, 3). In general, learning differences between various retrieval practice formats tend to be very small, if there at all, whereas the effect of retrieval practice is quite large (2). So, the key seems to be to provide opportunities for students to retrieve, and the format of retrieval is unlikely to make a huge difference. That said, if success is extremely low, then students may need their retrieval activities to involve more scaffolding. See the question below about retrieval with students of different ages and abilities.
See this blog and this blog to read more about different retrieval formats.
(1) Kang, S. H. K., McDermott, K. B., & Reedier, H. L. (2007). Test format and corrective feedback modify the effects of testing on long-term retention. European Journal of Cognitive Psychology, 19, 528-558.
(2) Smith, M. A., & Karpicke, J. D. (2014). Retrieval practice with short-answer, multiple-choice, and hybrid formats. Memory, 22, 784-802.
(3) Smith, M. A., Blunt, J. R., Whiffen, J. W. & Karpicke, J. D. (2016). Does providing prompts during retrieval practice improve learning? Applied Cognitive Psychology, 30, 544-553.
Perhaps somewhat surprisingly, the answer is usually no: testing generally does not reinforce misconceptions – as long as there is feedback after the incorrect answer. Incorrectly retrieving an answer and then receiving feedback is more beneficial than simply reading the correct answer without making a retrieval attempt. In one set of studies with vocabulary learning, students made guesses on items they had no idea about – their guesses had no basis whatsoever in any knowledge (1). After these guesses, they then saw the correct response as feedback. At test, students were much more likely to identify the correct definitions of the studied words if they had previously made an incorrect guess and then seen the correct response, compared to just seeing the correct response without making a guess.
(1) Potts, R., & Shanks, D. R. (2014). The benefit of generating errors during learning. Journal of Experimental Psychology: General, 143, 644-667.
Retrieving information seems to work well across the board. However, the way one approaches retrieval practice may need to be different depending on the students’ abilities and background knowledge. If the students are unable to retrieve anything, then retrieval is unlikely to be very helpful. Some research has found that students around 10 years old (4th grade) needed more guidance during retrieval compared to older students (1). For example, in that study, the 10 year olds were unable to write out on a blank sheet of paper much of what they could remember from something they had just read. But, they were able to more successfully answer questions with the text in front of them and then move to answering the questions without the text. Maximizing benefits of retrieval practice seems to be about balancing the difficulty of the retrieval and the ability to successfully retrieve (2). Retrieval practice is hard, and the difficulty is helping to improve learning. However, if it is too difficult and students are unable to retrieve, then the opportunity won’t be as beneficial as it might have been. (Note, less successful retrieval will likely still have some benefit! This will still give teachers and students feedback on what the student does and does not know, and unsuccessful retrieval attempts can still increase the benefit of subsequent study (3).) Scaffolding retrieval opportunities for students who are new to a topic or struggling to produce what they read can improve the effectiveness of retrieval for these students. Try spacing out retrieval over time to help the students work their way up to better performance.
See this blog for more information on promoting retrieval practice for younger children.
(1) Karpicke, J. D., Blunt, J. R., Smith, M. A., & Karpicke, S. S. (2014). Retrieval-based learning: The need for guided retrieval in elementary children. Journal of Applied Researching Memory and Cognition, 3, 198-206.
(2) Smith, M. A., & Karpicke, J. D. (2014). Retrieval practice with short-answer, multiple-choice, and hybrid formats. Memory, 22, 784-802.
(3) Potts, R., & Shanks, D. R. (2014). The benefit of generating errors during learning. Journal of Experimental Psychology: General, 143, 644-667.
Actually, there is some evidence that if anything, retrieval practice helps students who have trouble with memory (e.g., poor working memory) even more than it helps students without these issues; Megan summarized a study (1) demonstrating this effect a few weeks ago. In addition, there is even some promising research showing positive effects of retrieval practice in people diagnosed with ADHD (2), traumatic brain injury (3, 4), and multiple sclerosis (5)!
(1) Agarwal, P. K., Finley, J. R., Rose, N. S., & Roediger, H. L. (in press). Benefits from retrieval practice are greater for students with lower working memory capacity. Memory.
(2) Knouse, L. E., Rawson, K. A., Vaughn, K. E., & Dunlosky, J. (2016). Does Testing Improve Learning for College Students With Attention-Deficit/Hyperactivity Disorder?. Clinical Psychological Science, 4, 136-143.
(3) Sumowski, J. F., Coyne, J., Cohen, A., & DeLuca, J. (2014). Retrieval practice improves memory in survivors of severe traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 95, 397-400.
(4) Pastötter, B., Weber, J., & Bäuml, K. H. T. (2013). Using testing to improve learning after severe traumatic brain injury. Neuropsychology, 27, 280-285.
(5) Sumowski, J. F., Leavitt, V. M., Cohen, A., Paxton, J., Chiaravalloti, N. D., & DeLuca, J. (2013). Retrieval practice is a robust memory aid for memory-impaired patients with MS. Multiple Sclerosis Journal, 19, 1943-1946.
Yes! About 10 years ago, a report was published summarizing the research from cognitive psychology applied to education (1). These strategies in particular were found to have solid evidence and were suggested for implementation. Unfortunately, a recent textbook report suggests that they have not really made their way into teacher-training textbooks (2). However, it’s important to note that not all 6 strategies have equal amounts of evidence behind them. In particular, spaced practice and retrieval practice are most strongly supported by decades of research. On our downloads page, we’ve organized the strategies roughly in order from strongest (spaced practice) to least strong evidence (dual coding). This doesn’t mean that the evidence for dual coding is weak; but there are some important caveats to bear in mind when implementing this technique, as discussed in a recent blog post by Megan Smith.
(1) Dunlosky, J., Rawson, K. A., Marsh, E. J., Nathan, M. J., & Willingham, D. T. (2013). Improving students’ learning with effective learning techniques promising directions from cognitive and educational psychology. Psychological Science in the Public Interest, 14, 4-58.
(2) Pomerance, L., Greenberg, J., & Walsh, K. (2016, January). Learning about learning: What every teacher needs to know. Retrieved from http://www.nctq.org/dmsView/Learning_About_Learning_Report
Yes, actually, such evidence does exist – and it is somewhat counter-intuitive. We are generally faster at typing than at writing by hand. This means that we can type almost as fast as someone is speaking, typing out exactly what they are saying. This is actually less effective for learning than writing down a selection of key points (which tends to happen if you hand-write your notes). We had a student write a guest blog about the findings here. However, there is a way to make typed note-taking just as effective as handwriting. Those who have significant trouble with handwriting (a condition called dysgraphia) may prefer to use the alternative method proposed by another student in this post. This typed note-taking method includes effective study strategies of spacing and retrieval practice to consolidate memory of the material encountered in a lecture. These strategies can serve to compensate for the benefits you give up when moving from hand-writing to electronic note-taking.
While it may seem like mindfulness is the latest fad, there is actually a growing set of evidence that this practice can have a positive effective on educational outcomes, particularly in K-12 settings (1). Some have argued that mindfulness practice can improve executive functioning and reduce anxiety, thereby improving academic achievement (2). Another possible explanation is that mindfulness reduces mind-wandering – that is, thoughts unrelated to what you are trying to learn (3). Mind-wandering takes your attention away from classroom material, which hurts understanding and memory (see [this blog post][1C] for a summary of the research on mind-wandering during a lecture). If mindfulness practice decreases the frequency and intensity of mind-wandering episodes while you are trying to pay attention, then this could be beneficial to your learning.
(1) Schonert-Reichl, K. A., Oberle, E., Lawlor, M. S., Abbott, D., Thomson, K., Oberlander, T. F., & Diamond, A. (2015). Enhancing cognitive and social-emotional development through a simple-to-administer mindfulness-based school program for elementary school children: A randomized controlled trial. Developmental Psychology, 51, 52-66.
(2) Zelazo, P. D., & Lyons, K. E. (2012). The potential benefits of mindfulness training in early childhood: A developmental social cognitive neuroscience perspective. Child Development Perspectives, 6, 154-160.
(3) Mrazek, M. D., Smallwood, J., & Schooler, J. W. (2012). Mindfulness and mind-wandering: finding convergence through opposing constructs. Emotion, 12, 442-448.
Yes, it is! Psychologists refer to this as “procedural memory”. It works for things like riding a bike, but also for other “procedures” such as the sequence of events you go through when getting into a car or the way you try to ]solve problems. This is part of a system of memory that we call “implicit” or “non-declarative” memory. What this means is that we don’t have to consciously bring this type of memory to mind in order to use it. When you get out of bed in the morning, you don’t think about how to walk; you just do it. This type of memory is also a bit different because acquiring these memories require a lot of repetition. You can be told once that the capital of Kansas is Topeka and remember it, but you have to practice procedures in order for them to be encoded. These memories also rely on different areas of the brain (i.e. the basal ganglia and cerebellum) than factual memories or memories for life events.